首页> 外文OA文献 >Study of the electron temperature in an ultra-cold Rydberg plasma
【2h】

Study of the electron temperature in an ultra-cold Rydberg plasma

机译:超冷里德堡等离子体中电子温度的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report a systematic experimental and numerical study of the electrontemperature in ultra-cold Rydberg plasmas. Specifically, we have measured theasymptotic expansion velocities of ultra-cold neutral plasmas (UNPs) whichevolve from cold, dense samples of Rydberg rubidium atoms using iontime-of-flight spectroscopy. From this, we have obtained values for the initialplasma electron temperature as a function of the original Rydberg atom densityand binding energy. We have also simulated numerically the interaction of UNPswith a large reservoir of Rydberg atoms to obtain data to compare with ourexperimental results. We find that for Rydberg atom densities in the range$10^7 - 10^9$ cm$^{-3}$, for $n > 40$, the electron temperature, $T_{e,0}$, inthe Rydberg plasma is determined principally by the plasma environment when theUNP decouples from the Rydberg atoms at the end of the avalanche regime, andthis occurs when the plasma electrons are too cold to ionize the remainingRydberg population. The resulting electron temperature as a fraction of theinitial Rydberg binding energy is strongly correlated with the fraction ofatoms that have ionized at the end of the avalanche, and is in the range $0.7\lesssim k_BT_{e,0}/|E_{b,i}| \lesssim 3$. On the other hand, plasmas fromRydberg samples with $n \lesssim 40$ evolve with no significant additionalionization of the the remaining atoms once a threshold number of ions has beenestablished. The dominant interaction between the plasma electrons and theRydberg atoms is one in which the atoms are deexcited, a process that competeswith adiabatic cooling to establish an equilibrium where $T_{e,0}$ isdetermined by their Coulomb coupling parameter, $\Gamma_e \sim 0.01$. In thisregime, the Rydberg atoms remain localized as the UNP expands, and the plasmaand atoms decouple gradually.
机译:我们报告了超冷里德伯格等离子体中电子温度的系统实验和数值研究。具体来说,我们使用离子飞行时间光谱仪测量了从冷,致密的里德堡rub原子样品演化而来的超冷中性等离子体(UNPs)的渐近扩展速度。由此,我们获得了初始等离子体电子温度的值,该值是原始里德堡原子密度和结合能的函数。我们还数值模拟了UNPs与大量Rydberg原子储层的相互作用,以获得与我们的实验结果进行比较的数据。我们发现,对于Rydberg原子密度在$ 10 ^ 7-10 ^ 9 $ cm $ ^ {-3} $的范围,对于$ n> 40 $,在Rydberg等离子体中的电子温度$ T_ {e,0} $当等离子体在雪崩状态结束时,UNP与里德堡原子解偶联时,主要由等离子体环境决定,这是由于等离子体电子太冷而无法电离剩余的里德堡种群而发生的。产生的电子温度(作为初始里德堡结合能的一部分)与在雪崩结束时已离子化的原子的比例密切相关,范围为$ 0.7 \ lesssim k_BT_ {e,0} / | E_ {b,i } | \ lesssim 3 $。另一方面,一旦建立了阈值离子数,则来自Rydberg样品的等离子体(n = lesssim 40)会发生演化,而剩余原子没有明显的额外离子化。等离子体电子与雷德堡原子之间的主要相互作用是原子被激发,这一过程与绝热冷却竞争以建立平衡,其中$ T_ {e,0} $由其库仑耦合参数$ \ Gamma_e \ sim确定0.01美元。在这种情况下,随着UNP的扩展,Rydberg原子保持局域性,等离子体和原子逐渐解耦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号